
CELEBRATING THE GENICELEBRATING THE GENICELEBRATING THE GENICELEBRATING THE GENIUS OFUS OFUS OFUS OF GOVE’S SUPPORT GOVE’S SUPPORT GOVE’S SUPPORT GOVE’S SUPPORT FOR FOR FOR FOR
COMPUTER SCIENCECOMPUTER SCIENCECOMPUTER SCIENCECOMPUTER SCIENCE
"Computer Science is a rigorous,

fascinating and intellectually

challenging subject”. So says

Michael Gove, Minister of

Education. He continued his

keynote speech at BETT by saying;

“Although individual technologies

change day by day, they are

underpinned by foundational

concepts and principles that have

endured for decades. Long after

today's pupils leave school and

enter the workplace - long after the

technologies they used at school

are obsolete - the principles learnt

in Computer Science will still hold

true". This is the clearest statement

yet from the Government.

Two days later, The Royal Society

published its 18 month study,

“Shutdown or Restart” carefully

identifying three separate strands

that comprise Computing in

schools. They make 11

recommendations to take the

subject forward.

Michael Gove cited the CAS

Curriculum as one source schools

should look to when planning new

curricula. CAS look forward to

supporting teachers as they plan for

September and beyond. We also

look forward to working with others

in creating a curriculum that inspires

our youngsters with the magic and

beauty of computer science.

ALAN TURINGALAN TURINGALAN TURINGALAN TURING
“We in Britain should never forget that one of our great heroes, Alan Turing, laid

the foundation stones on which all modern computing rests.” In his BETT

speech (see right) Michael Gove highlighted 2012 as marking the centenary of

his birth. Some students may be aware of the name, largely because of his

code breaking activities during WW2. Some may know about the tragic nature

of his death; a persecution that is hard for many to grasp today, though it

happened little more than fifty years ago.

But how many will be able to recount any details of his key ideas? In the

preface to his excellent book, ‘The New Turing Omnibus’, AK Dewdney pays

tribute to “...Alan Turing, whose ripe mathematical imagination was fuelled by

fantasies of mechanized intellect. Turing’s greatest single legacy, the Turing

machine itself, became the best known vehicle for the emerging theory of

computability. Wonderfully simple, with only two moving parts, it can be

explained to the man or woman in the street, yet it embraces everything we

mean by the word ‘computable’!”

Turing was a genius ahead of his time, yet few

pupils are aware of his place in history.

Computing has been hidden from the

curriculum for far too long. Many wrongly

equate computing with just learning about

programming. It’s far deeper than that. You’ll

find pointers to Turing’s ideas inside this

newsletter and more in the online supplement.

The centenary is a marvellous opportunity for

teachers to resurrect some key computing

concepts; concepts developed by Turing before an

electronic computer had even been built.

We’ll cover some resources in each issue

this year. A wonderful five minute BCS

video, made as part of their Pioneers

series, is the perfect starting point.

Why not use it for an assembly?

The “Computing At School” working group (CAS) is a membership association in partnership with BCS, The Chartered Institute

for IT and supported by Microsoft, Google and others. It aims to support and promote the teaching of computing in UK schools.

COMPUTING AT SCHOOL COMPUTING AT SCHOOL COMPUTING AT SCHOOL COMPUTING AT SCHOOL NEWSLETTER NEWSLETTER NEWSLETTER NEWSLETTER WINTER / SPRING 2012WINTER / SPRING 2012WINTER / SPRING 2012WINTER / SPRING 2012

image © The Bletchley Park Trust

THE BLINKINGTHE BLINKINGTHE BLINKINGTHE BLINKING
CURSORCURSORCURSORCURSOR

The 80s were rubbish. We were

promised Bacofoil jumpsuits and

teleporting to school. Instead we

got Cabbage Patch Kids and

strikes. Fortunately we also had

the best thing ever invented: low

cost home computers that

plugged into your telly. The mighty

BBC Micro; the po’boy ZX

Spectrum; the painfully hip

Commodore 64; plus a lesser

pantheon of Dragons, Orics,

Lynxes and more.

Playground fights over which

machine was best were not

uncommon. Yet these computers

all had something in common:

when you switched them on they

just sat there, blinking. Waiting for

you to tell them what to do. This

was a wonderful thing. The micros

came with programming manuals

and there was an irresistible urge

to make them do stuff. So we

hacked and we POKED and we

coded and created. At least until

Mum kicked us off the telly

because That’s Life was on.

The blinking cursor single

handedly made the UK tech and

digital creative industries the envy

of the world. Never mind that

Google’s Eric Schmidt recently

found our “great computing

heritage” stuffed in a skip round

the back of Poundland. The 8-bit

revolution is what kicked it all off.

The Raspberry Pi Foundation

wants to reboot this revolution. It

wants to recapture the fun and

excitement and creativity of these

early micros; to get kids coding

again and to foster a new

generation of computational

thinkers and digital creators.

Its plan? To make a low cost

home computer that plugs into

your telly. That sits

there and

blinks at

you.......

Where did it all start? Was there a

light bulb moment?

There wasn’t a eureka moment; more

a growing, horrible realisation that

things in school computing were not

as they should be. Eben (Upton) was

working at St John’s College,

interviewing kids applying to the

university. There was a noticeable

drop-off in the quality of applicants. In

the 1990s, those coming to Cambridge

would arrive equipped with a few

programming languages and several

years’ experience of hobbyist hacking.

By the 2000s, things had changed

significantly. The typical applicant had

perhaps written HTML, used CSS or

created a macro or two, but that was

usually the extent of their

‘programming experience’. The

numbers applying were falling too.

We talked about the causes. A

number of factors are in play, but one

big culprit seemed to be the

disappearance of computers which

are easy for kids to program. These

vanished with the ubiquity of the

Windows desktop. We grew up with

BBC Bs, Amigas and ZX Spectrums.

You had to type something to make

them do anything. My Beeb, and the

Beebs at school, booted into Basic;

every kid in school knew how to walk

into WHSmiths and run a little

program making all the display

machines say “This shop smells of

cheese.” (We also knew how to sprint

out of WHSmiths. They called it a

rounded education!) Programming

was much more prevalent in school;

the curriculum has changed to an

unrecognisable degree.

I told a neighbour’s kid about

Raspberry Pi. His ears

pricked up; he told me how

he’d love to learn to program, to

work in games – but his family don’t

have a computer. Mum’s a cleaner,

Dad drives a van. Neither comes into

contact with computers in their daily

lives and they’re not a necessity in the

house. They have a Wii, which the

kids use to browse the internet, but a

Wii is a closed box that no kid is going

to be able to program. It’s a story

we’re hearing over and over again.

Twenty per cent of UK homes don’t

have a computer. Since schools

stopped teaching programming such

kids have no way into computing.

After an evening complaining, Eben

got out some breadboard, ordered an

Atmel chip and a pile of transistors,

and sat down to solder together a little

computer that booted into Python, with

an idea to build a kit that perhaps you

could sell to schools. I got to hold the

voltmeter. Five years on, one room

has been converted into an

electronics lab, and that first board

and Broadcom chips have had babies

which turned into Raspberry Pi.

If I was gathering a team to take

over the computing world, the

RasPi Trustees is where I would

start. Apple started with a lot

less :). How did you get together?

Eben brought the team together from

friends who work at the Cambridge

Science Park (David Braben); old

colleagues from the university (Jack

Lang, Alan Mycroft and Rob Mullins)

and friends of theirs (Pete Lomas).

They were picked for their experience

– David is, quite simply, legendary in

British computing; Jack worked on

software for the original BBC Micro

and teaches business; Pete runs a

PCB fab that’s one of those British

technological success stories; Alan

and Rob’s educational contacts and

experience are as good as you could

REDISCOVERING THE SPREDISCOVERING THE SPREDISCOVERING THE SPREDISCOVERING THE SPIRIT OF IRIT OF IRIT OF IRIT OF
THE BBC MICRO: THE BBC MICRO: THE BBC MICRO: THE BBC MICRO: RASPBERRY PIRASPBERRY PIRASPBERRY PIRASPBERRY PI
Even before its launch, the innovative Raspberry Pi is already

gaining widespread acclaim. But how did it come about? In an

exclusive interview Clive Beale talks to Liz Upton about what

spurred its development and motivated the trustees.

hope to find. They’re a really strong

team, and I think we’d have struggled

to put together a group like this

anywhere outside Silicon Fen.

In a project like this, where we rely so

heavily on the open-source

community, transparency and a

genuine gusto for what you’re doing is

essential. I’m preternaturally

enthusiastic about the project. I’ve

been living with generations of circuit

boards stacked all over my house for

years, so I was a good fit for getting

the Pi community up and running.

And the name? Is it a riff on Apple?

Is there a nod to Python?

It’s partly an in-joke. Fruit names

were a nice tradition in computing

(Apple, Apricot, Blackberry, Tangerine

and all that jazz). I think Rob

suggested the raspberry, which is a

friendly fruit – Pi, a reference to

Python, came from Jack, an ex-

restaurateur and fan of pastry.

The original charitable objective is:

“to further the advancement of

education ... particularly in the field

of computers, computer science

and related subjects” Has this

changed in the last two years?

When the community started to

respond to the idea we realised the

potential scope was far, far wider.

After David appeared on Click Online

(BBC, May 2011), we started getting

thousands of mails a week. Many are

from groups priced out of traditional

computing. Suddenly, the impact of

what we’re working on started to

look…a little scary, if I’m totally

honest. We have to get this right.

Do you see it as a game changer?

Lord, we hope so. We’re not really

innovators in size or compute power.

There are other machines out there

that do a lot of what Raspberry Pi

does. But we are innovators on cost.

Success would be competitors driving

costs down so they’re accessible to

everybody. The fact that it’s possible

to produce hardware at this sort of

price, running open-source software,

exposes how expensive business

software is. When a license is ten

times the cost of the hardware you’re

running it on, that’s quite startling.

Broadcom are instrumental in the

project. Is this an experiment, or a

favour? Do they share the

Foundation’s goals?

Broadcom sell us chips on commercial

terms; they aren’t subsidising us, as

some people believe. They’re doing

us favours in agreeing to sell us chips

at all, because our volumes are

millions short of what they usually sell

in; and in allowing some engineers to

work on the project in their spare time.

They believe in our goals; we’ve had

support and reassurance right up to

CEO level. On a purely business level,

ensuring graduates can program is a

good thing. They have a very active

charitable arm (The Broadcom

Foundation), much more responsible

than some of the more opinionated

open source community would have

you believe! That has hooked us up

with charities, especially in India,

which we hope can push the device

into the developing world.

Jack Lang said, “there’s no point in

inventing a better mousetrap if

mice aren’t a problem.” Have you

understood the problem? Is

Raspberry Pi the solution?

If we reach one kid per school who

has a latent talent we’ll have done

what we set out to do; reinvigorating

the demographic applying to university

RASPBERRY PI FOR RASPBERRY PI FOR RASPBERRY PI FOR RASPBERRY PI FOR
EDUCATION EDUCATION EDUCATION EDUCATION USER GUIDEUSER GUIDEUSER GUIDEUSER GUIDE
An education version of the Pi is

planned for release this spring. It

was very clear to CAS that a user

guide was a must, and with the

Raspberry Pi team already

overstretched we decided to write

one ourselves. The guide will

teach two languages, Scratch and

Python, through creative

scenarios such as music and

graphics. It will also include advice

and resources for budding

computer scientists. The outline of

the guide is already written and

there is currently a huge amount

of work going on backstage to

develop the content. The guide

will be available as a free

download and we are

investigating the possibility of a

printed version. Paradigm shifts

are ten a penny nowadays.

Everything from smart phones to

air fresheners are described as

“game changers”. But in a couple

of years we may well look back

and see that the Raspberry Pi

deserves this sticker. We hope

that the CASpberry Pi user guide

will contribute to its success as a

learning tool and help inspire a

new generation of coders.

and later, jobs in UK tech

companies. We can do much more

than that, but the proof of the

pudding is in the eating. We would

love to be able to bring more girls

into the subject, but I’m not sure that

that’s something the Foundation can

address; it needs to be happening in

schools, at a classroom level.

Many people want to change the

world. Most don’t. Why is

Raspberry Pi different?

It’s a mindset thing. I don’t subscribe

to the notion that one person can’t

make a difference. You’ve got to be

prepared to work hard if you want to

change things – but if you’re working

on something you’re passionate

about, it’s not really work, just a very

supercharged hobby that requires a

serious caffeine habit. Clive Beale

Jack Lang demonstrates a prototype Pi at a CAS working group meeting

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

GAMEMAKER: A GREAT WAY GAMEMAKER: A GREAT WAY GAMEMAKER: A GREAT WAY GAMEMAKER: A GREAT WAY
TO LEARN TO LEARN TO LEARN TO LEARN HOW TO PROGRAHOW TO PROGRAHOW TO PROGRAHOW TO PROGRAMMMM

At that time I ran a small

club for children (aged

11 to 13) who were

interested in developing

their computer skills.

Using GameMaker it is

possible for children as

young as 7 to program

events using simple,

easy-to-learn, drag-and-

drop actions. They

amaze themselves and

their friends when they

successfully create

professional-looking

games. Once the

children are more

experienced, I encourage them to use the built-in GameMaker Language

(GML). They can work with existing ‘blocks’ of code or write their own

scripts from scratch. Using GML it is possible to teach all the

programming constructs children might learn through working with a

mainstream programming language.

Until I saw GameMaker I tended to teach Visual Basic because the

children liked to create their own little Windows style, self-contained,

applications. They weren’t keen on the rigour of testing though. With

GameMaker, the children are eager to test their creations on their

friends and take the comments made by their peers seriously. When

developing games the performance of their application is a major

concern It is particularly rewarding to see how eager they are to amend

their games in light of the advice received. The children display a

competitive edge. They want their game to be the ‘coolest’ and become

involved in a race to develop them. They are, in short, fully engaged

with the design process.

Teaching GameMaker requires little prior knowledge. There are oodles

of tutorials and lots of guides posted on YouTube (many by children).

YoYo Games has developed an extensive, active and supportive

community. It serves as a space for children to seek help and download

games and tutorials – everything a teacher could wish for. Moreover it

teaches them to learn independently. Many of my pupils are much

better GML programmers than I am and know not to come to me

expecting answers to their problems – they have other strategies which

include posting questions and deconstructing existing games. Is that not

the modus operandi of all commercial programmers? And what of the

club? Well it is still going strong but it is no longer small, nor is restricted

to the 11 – 13 age range. We now have a club for 7 and 8 year olds.

 Graham Hastings

SCHOOL PROTOTYPING PILOT SCHOOL PROTOTYPING PILOT SCHOOL PROTOTYPING PILOT SCHOOL PROTOTYPING PILOT
WITH NEW WITH NEW WITH NEW WITH NEW .NET GADGETEER.NET GADGETEER.NET GADGETEER.NET GADGETEER
Microsoft Research have recently released

an exciting new product to enable the

prototyping of a huge range of gadgets.

Sue Sentance reports on a school pilot

that has been running in eight schools in

Essex and Cambridgeshire.

.NET Gadgeteer was developed by Nic

Villar and James Scott. The first kits are

now available for sale from GHI

Electronics. It has great potential in

schools as it can be used to teach

students simple electronics, computer

programming and computer-aided design.

A digital camera can be built in about half

an hour!

A school pilot has been running in Essex

and Cambridgeshire to find out how

secondary school children get on with the

programming of the Gadgeteer. Eight

secondary schools are involved. After-

school clubs were

planned for Year 9s to

try out the teaching

materials that I am

developing. The pilot

was launched at a

workshop on October

6th. The teachers spent

the afternoon building

gadgets using .NET

Gadgeteer and had the

opportunity to talk to the

developers about tricky bits of

programming. The pilot will end with a

grand “Show and Tell” at Microsoft

Research on January 30th 2012 where all

participating children will be able to

demonstrate the gadgets they have

developed themselves with the best being

awarded prizes.

The after-school clubs are well underway.

There have been no shortage of children

wanting to take part. Niki Smith, a

participating teacher says of her club “the

children are having a lovely time with

Gadgeteer and so are the teachers. They

talk about it during the week. They are not

put off at the first hurdle when the code

doesn’t work, they are quite happy to fiddle

around and find their way through it.”

Sue Sentance

Graham Hastings was shown GameMaker by a pupil in

his computer club nine years ago. They created

professional looking ‘arcade’ games within a few hours.

He explains the appeal and why he is still using it today.

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

An example of a simple GameMaker arcade style treasure game

INTRODUCING ROBOTICSINTRODUCING ROBOTICSINTRODUCING ROBOTICSINTRODUCING ROBOTICS: HAVING : HAVING : HAVING : HAVING
LOTS OF FUN WITH LOTS OF FUN WITH LOTS OF FUN WITH LOTS OF FUN WITH BITS AND BOTBITS AND BOTBITS AND BOTBITS AND BOTSSSS

Last year we started working with

robots in a Year 9 lunch time club.

The students worked in small groups

of three or four, equipped with the

NXT kit and a recipe for a basic 'rotate

and shoot' sentry bot. It guided them

through the process of building their

bot and creating basic programs using

the built in software with its drag and

drop interface - very useful for those

completely new to programming. The

students were shown how to upload a

program, operate and test its

movement, introducing ideas like

sequencing, loops and iteration.

Initially the computer was used to

control the robot using its built in

Bluetooth connection, however we

discovered a free Android app called

MINDdroid, that did the job just as

neatly from a mobile phone. This gave

the freedom to walk the bots about,

exploring different terrain and new

challenges. It also introduced greater

ease of control, making handling more

fluent, much like a game controller.

Having built the initial bot from the

given instruction set, students were

very keen to create different models.

We ran a Robot Challenge, over a

range of events including a Maze,

Sprint, Shot-Put and Target Shooting.

The students designed and built their

bots, testing them and reworking their

designs as needed. Their particular

aptitudes came to the fore in the

process, some focussing on design

elements, whilst others looked at

refining the programming for

manoeuvrability, improved sensing

and more accurate shooting. Most of

those Year 9 students have returned

to the club in Year 10 with new ideas

and a keenness to explore still further.

We have also embarked on an a

multi-school science project for Sixth

Form students who have never

programmed but are keen to explore

the possibilities. The learning curve is

shallow and students are excited by

the swift results they get; they are

keen on the creative aspects and on

the opportunities they have to develop

and experiment, to ask “What if?” and

get immediate feedback.

Looking ahead, the next project

involves programming the robots

using Microsoft Robotics software

(see supplement)

moving away from

the visual, drag and

drop interface to

coding and giving

other choices, for

example using XBox

controllers to control

the bots. This is

proving interesting

for senior students

and also provides

some of our juniors

with useful examples

of practical coding in

a very engaging way.

Lyndsay Hope

Lego Mindstorms NXT kit is proving a hit in a lunchtime club in

Monmouth. Its easy interface has hooked the students, but, as

Lyndsay Hope explains, the real benefit lies in provoking them

to explore further into the capabilities of ’real’ languages.

The submission deadline to the

annual UK schools animation

competition is March 23rd.

Promising to be even bigger than

previous years, pupils between

the ages of 7 and 19 are

challenged to produce a one

minute key frame animation.

Initiated by the University of

Manchester five years ago,

Animation 12 has a huge following

in schools. Last year 563 schools

registered, with 886 entries

received. Some 45 students from

25 schools won prizes last year.

The galleries on the Animation 12

website will provide inspiration.

Further details about how to

register are in the supplement. A

greater range of software is

permissible this year, including

Scratch, Alice, Flash, DrawPlus,

KoolMoves, SWiSH Max4 and

Blender. Animations can be based

on any theme but this year there

will be a special category for

animations based around the life,

work, ideas and impact of Alan

Turing. Turing worked with the

University of Manchester following

WW2, where computer pioneers

developed the first stored program

computer, ‘The Manchester Baby’

in 1948. A separate competition,

Codebreaker, using Greenfoot,

has been organised in conjunction

with CAS. See overleaf for details.

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

VPL CODE FOR VPL CODE FOR VPL CODE FOR VPL CODE FOR ROBOTICSROBOTICSROBOTICSROBOTICS
Microsoft’s Visual Programming

Language (VPL) for robotics is

aimed at novices, based on a

“graphical dataflow-based model.

A dataflow program is more like a

series of workers on an assembly

line, who do their assigned task as

the materials arrive. As a result

VPL is well suited to programming

a variety of concurrent processing

scenarios.” See the web

supplement for further details of

how to access this free resource.

WHERE DID MIND EXPANWHERE DID MIND EXPANWHERE DID MIND EXPANWHERE DID MIND EXPANDING DING DING DING
TECHNOLOGY TECHNOLOGY TECHNOLOGY TECHNOLOGY COME FROM?COME FROM?COME FROM?COME FROM?

To celebrate the centenary of Alan

Turing’s birthday in 2012, the Computing

At School group has launched

“Codebreaker”, a Greenfoot-based

programming competition for school

students. A full range of prizes is available

for each age group and the competition is

free to enter.

CAS are delighted that the Codebreaker

competition is being offered as part of the

very successful Animation12 run by the

University of Manchester and enables

students to provide interactive

programmed solutions on the theme.

In launching the competition CAS co-

ordinator Simon Humphreys said “Alan

Turing was such an important figure in the

history of computing; a national

competition aimed at encouraging students

to design and implement a program on the

codebreaking theme is a fitting way to

celebrate Turing’s life and work at

Bletchley Park”.

Using the Greenfoot IDE, students have to

create an interactive program which is

linked to theme of “Codebreaker”, either as

a game or a puzzle. It is not intended that

the player task is to necessarily break a

code - a general link to the theme is

sufficient.

The CAS website has a suite of resources

to support teachers including a 10-week

after school club programme culminating in

work devoted to the Codebreaker

challenge plus supplementary resources

for researching the life and contribution of

Alan Turing and cryptography. For links

see the web supplement.

Entries, which must be received by Friday

23 March 2012 can be submitted by

individuals or teams in four age categories,

ranging from 7 – 19. These will be

reviewed by a panel of judges and the

shortlisted winners will be announced in

May 2012.

Technology develops at a bewildering speed. Today’s

developers stand on the shoulders of giants. Roger

Davies praises a free book that looks at the origins of the

ideas that underpin the computing revolution.

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

“You can’t understand where mind-amplifying technology is going

unless you understand where it came from.” So says Howard

Rheingold in his introduction to ‘Tools For Thought’. Written in the early

1980s, Rheingold was surveying the onset of the personal computer.

Many books tell that story as the work of Jobs, Wozniak, the homebrew

clubs and teenagers in garages. Good as those stories are, Rheingold

points out, “If it wasn't for people like JCR Licklider, Doug Engelbart,

Bob Taylor, Alan Kay, it wouldn't have happened. But their work was

rooted in older, equally eccentric, equally visionary, work, so I went

back to piece together how Boole and Babbage and Turing and von

Neumann created the foundations that the later toolbuilders stood upon

to create the future we live in today.”

This is a wonderful book, freely available, though tucked away on his

website (link in the supplement). It explains the origins of the ideas on

which today's complex technologies rest, and it does so in an engaging

accessible fashion. Rheingold weaves a story that takes us from the

ideas of Babbage and Lovelace’s programming, Boolean logic and

Turing-type computation to the scientific and technological

breakthroughs driven largely by the politics of the post war world.

Rheingold has a way of explaining complex concepts in layman’s terms

without robbing them of their depth. Thus he explains the importance of

Information Theory, the early explorations in Artificial Intelligence,

network technologies, developments in storage, processing and user

interfaces. Most importantly, there is a chapter recognising the work of

Seymour Papert and Alan Kay. Their vision of the computer as a child’s

tool for thought, or, in Rheingoldian terminology, a mind amplifier is a

‘must read’ for every computing teacher. It ends speculating about

developments in immersive worlds and online communities many years

before internet use became a widespread.

Chapter three is a succinct explanation of Alan Turing’s major

contributions to this amazing history. His vision of a Universal Machine,

which could be programmed to perform as a ‘virtual’ machine is

remarkable for its clarity as is the unification of his ideas on

programming, translation, debugging and machine dialogue. As the

book makes clear, Alan Turing stands at the centre of the development

of deep, rich, intellectual discipline - computing.

A CALL FOR TURING 1A CALL FOR TURING 1A CALL FOR TURING 1A CALL FOR TURING 100 00 00 00 PARTICIPANTSPARTICIPANTSPARTICIPANTSPARTICIPANTS
Turing100 invite students, teachers and others to be a

part of a historic and exciting event. Using the famous

Turing test the preliminary phase will start soon and

continue till May. Participants will be asked to judge

'entities' on special Turing100 web pages. They will be

asked to judge the conversation ability (0=bad to 100=humanlike)

of each of the six entities. See the supplement for details.

APPRECIATING TURING’S WORK: APPRECIATING TURING’S WORK: APPRECIATING TURING’S WORK: APPRECIATING TURING’S WORK:
TAKING PUPILS TO SEETAKING PUPILS TO SEETAKING PUPILS TO SEETAKING PUPILS TO SEE STATION STATION STATION STATION XXXX

The most famous of the codes and

ciphers broken at Bletchley Park

(known as Station X) were the Enigma

machine generated ciphers, but lots of

other coding systems used by Hitler

and his allies were also broken.

Behind the magnificent mansion in the

Buckinghamshire countryside, large

wooden huts were erected on the

lawns of the estate. These became

home to the famous codebreakers of

the Second World War and one of the

birthplaces of modern computing and

communications.

A team including Turing made the first

break in Enigma in early 1940. More

successes followed so that by April

they had cracked both the German

Army and Luftwaffe ciphers. The

process of breaking Enigma was due

to a complex electro-mechanical

device, designed by Turing, known as

The Bombe. The Enigma ciphers

were changed daily. The Bombes

were operated by an army of Wrens in

Hut 11, greatly reducing the odds (and

time) to determine the ever changing

settings used. As the code breaking

work increased, the numbers working

at Station X swelled to over 9000

personnel. Additional Bombe units

were sited around Buckinghamshire,

and by 1944 there were at least 200 in

use.

You can take a group around the

grounds of Bletchley Park, identifying

the surviving huts and learning more

of this fascinating story. Other

buildings too, are steeped in history.

‘Cottage Number 3’ was where the

first break was achieved, whilst ‘The

Bungalow’, an old fruit store became a

think tank for early computer research

by mathematicians including Turing,

Gordon Welchman, Max Newman and

Tommy Flowers. In 1943 the Nazis

had developed Lorenz, a semi

automatic machine even more

complex than Enigma. Newman was

convinced the answer to cracking

Lorenz ciphers lay in developing a

computing machine such as that

described by Turing in his pre-war

thesis. At the roundabout, some

crumbling steps are all that remains of

Block F. It was here, in late 1943 that

Tommy Flowers housed Colossus,

Bletchley Park’s greatest success. So

successful was Colossus that a Mark

II model was designed and six were

housed in Block H in 1944. Block H is

now the home to The National

Museum of Computing (see right).

The main exhibition centre is found in

Block B whilst other buildings house a

range of associated exhibitions.

Pre-booked school visits are

welcomed, tailored to different age

groups, with Computer Science

themed visits organised through the

NMoC. Further details can be found

on their informative website. See

supplement for links.

If you have never taken pupils on an educational trip, the Turing

centennial provides a obvious opportunity, and Bletchley Park

an obvious location. This was the location of the wartime code

breaking centre, where Turing played a central role.

The National Museum of

Computing houses the Colossus

computer rebuilt by Tony Sale and

continues the history of the

development of computing from

the 1940s to the present day.

Operated separately

by the Codes and

Ciphers Heritage

Trust, a visit is

typically made up of a

short introduction,

tour or workshop and

optional presentations.

The NMoC is currently

developing

presentations on

• Computing history

• The development of

storage

• The race to get faster

• What exactly is a computer

• The Turing machine

They also have a classroom with

a rebuilt BBC computer cluster.

They currently offer workshops for

post 16 Computing students on

• First Generation Machine Code

Programming on PDP8s

• Second Generation Assembly

Code Programming on PDP8s

• Third Generation BASIC

Programming on BBC micros.

A group may combine these

activities with a look at the

exhibition in Bletchley Park

showing the Enigma machines

and the work of the code

breakers. Prices are dependent

on the age of pupils, but very

reasonable. Further details on

their website.

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

FIND OUT MORE ABOUT BLETCHLEY PARK FROM FIND OUT MORE ABOUT BLETCHLEY PARK FROM FIND OUT MORE ABOUT BLETCHLEY PARK FROM FIND OUT MORE ABOUT BLETCHLEY PARK FROM CS4FN CS4FN CS4FN CS4FN
Our friends at CS4FN have lots of extra information about Bletchley

Park. Whether you want to know how you can help contribute to the

restoration, the debate about just which machine can claim to be the

first computer, how the Bombe worked, or a host of activities on

frequency analysis and code breaking their website has it all. Between

them, Bletchley Park, the NMoC and CS4FN websites will provide

students with an excellent resource for pre or post visit work.

COMPILERS, GRAPHS ANCOMPILERS, GRAPHS ANCOMPILERS, GRAPHS ANCOMPILERS, GRAPHS AND ALAND ALAND ALAND ALAN
TURING’S TURING’S TURING’S TURING’S HALTING PROBLEMHALTING PROBLEMHALTING PROBLEMHALTING PROBLEM

It would be very useful if, before we ran a program, the IDE could warn about

potential problems with our program: not the expected type of syntax error, but

the ‘Did you mean to do this?’ type of error. For example, Visual Studio warns us

about using a variable before we’ve initialised it, not using a variable we’ve

defined, and even paths through a function’s code which avoid returning a value.

When we program we’d all like to avoid infinite loops: wouldn’t it be great if the

IDE could say ‘Hey, this program will never stop’ BEFORE we run it? This is the

core of the Halting Problem: Can we write a program that, when given ANY

program and some data, tells us if it will halt or not when run with that data?

So where do graphs come in? Well, think about programs as a directed graph by

1. numbering each line of the program from 1 to n

2. drawing a graph where each line in the program is represented by a vertex

3. join two vertices i, j with an edge if line j of the program is (or could be) the line

of code executed immediately after line i (i is the source, and j is the destination).

The box above right shows the graphs that represent three sample programs.

Notice that the graph feature that distinguishes a program that never halts (or

possibly never halts) from one that always halts is the presence of a cycle

(representing a programming loop); lines 2 to 3 / 3 to 2 in the second program

and 4 to 5,/ 5 to 4 in the third. If there is a way of avoiding (or getting out of a

cycle) then a program could halt – depending on the input.

Generating the graph of a program uses a technique called scanning to identify

keywords such as If, Do, Loop, End and so on. The sidebar left explains the

concept in more detail. The algorithm to produce a graph can be written in

pseudo-code as

initialise

do until no more lines

 get next program line

 if this line is the destination of a previous line(s) then

 generate one or more edges from their source to this line

 if this line is a source (backwards/forwards in the program) then

 save this line’s number

Once we have a description of the graph we can draw it using the DOT

language. This is a very useful technique for some student projects. See the far

sidebar for more details of what is involved. The web supplement contains a

simplified version of the scanning / graphing program written in VB. It only

handles enough control structures to make its point, and has very little in the way

of graceful recovery from errors. Nonetheless, it is a useful program to

demonstrate and worth studying.

The heart of the program is in the function called graphURL which takes the text

of a program (parameter programText) and returns a Google Charts URL to draw

the graph of that program. It creates an instance of the Scanner class on the

program text, then scans through the text using, in essence, the algorithm

CREATING A GRAPH CREATING A GRAPH CREATING A GRAPH CREATING A GRAPH
OF A OF A OF A OF A CODE SEQUENCECODE SEQUENCECODE SEQUENCECODE SEQUENCE
As part of A-level Computing we

show the students a number of

interesting techniques that they

could use in their projects, e.g.

unlimited precision arithmetic,

graphs (of the Sales v

Temperature variety), validation,

and sub-classing Windows

controls.

One useful technique is that of

scanning: taking a stream of

characters, and breaking it down

into its tokens or components.

When a GetNextToken function is

called a token class (identifier,

keyword, symbol, string, etc) is

returned, possibly with some

additional information, e.g. the

name of the identifier, an

enumerated value for the

keyword, or the value of a

number. So, given some code like

this: If n <= 5 Then

 n += 25

 End If

repeated calls to GetNextToken

give:

keyword, If

identifier, n

symbol, <=

integer, 5

keyword, Then endOfLine

identifier, n

symbol, +=

integer, 25 endOfLine

keyword, End

keyword, If endOfLine

Scanners are really useful for

compilers, interpreters, and free-

form data entry. Rather than

sprinkle lots of string handling

code throughout our program we

can just keep on calling the

GetNextToken subroutine and

decide what to do based on its

return value. The ‘deciding what to

do’ process is called parsing and

can be introduced to students

when looking at defining

grammars using Backus Naur

Form - yet another link between

topics at A-level!

Teaching A-level Computing offers plenty of opportunities to

make links between different areas of the syllabus. John Stout

shows how lexical analysis and graph structures can help

students visualise the tricky concept of the ‘Halting Problem’.

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

 'SOMETIMES HALTS,DEPENDING ON DATA
Sub Main()
 Dim N AS Integer =
 Console.ReadLine().ToInteger()
 If N > 1 THEN
 Do
 Loop

 End If
End Sub 'NEVER HALTS

Sub Main()
 Do
 Loop
End Sub

 'ALWAYS HALTS
Sub Main()
 I = 1
 I = I + 1
End Sub

USING DOT LANGUAGE USING DOT LANGUAGE USING DOT LANGUAGE USING DOT LANGUAGE
TO TO TO TO CONSTRUCT GRAPHCONSTRUCT GRAPHCONSTRUCT GRAPHCONSTRUCT GRAPHSSSS
Graphviz is free, open source

graph visualisation software.

You’ll find the link to their website

in the supplement. Graphviz

programs take a graph description

in simple text language called

DOT. To draw the ‘Sometimes

Halts’ graph, above left, using

DOT we need to generate a text

file containing:

digraph SometimesHalts {

 1 -> 2 -> 3 -> 6 ->

7; 3 -> 4 -> 5 -> 4;

}

The description is passed to the

DOT language processor. An

alternative is to generate a URL

for Google Charts like this:

chart.googleapis.com/

chart?cht=gv&chl=digraph

{1->2->3->6->7;3->4->5-

>4}&chs=150x150

DOT has lots of other options for

controlling layout, fonts etc but for

our purposes this is all we need.

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

outlined previously. As always the devil is in the details, but the

diagram right demonstrates the principle. For example, when finding a

For loop (at line 5 say), it stacks a CodeNode object of type "For" and

line number 5, then generates an edge from line 5 to line 6, and

continues through the code inside the For / Next loop until it gets to a

Next (say at line 10), when it generates an edge back to line 5 and an

edge from line 5 to line 11. Similarly, when finding an If / Else / End If

structure (at line 20) it stacks a CodeNode object of type "If" at line

number 20, generates an edge from line 20 to line 21, and continues

through the code of the True branch. At the Else (line 25) an edge is

generated from line 20 to line 26, and then finally at the End If (line

30) edges are generated from line 25 to 31 and from 30 to 31. Stacks

have to be used since programs can nest control structures of

different types within each other.

Let’s get back to the halting problem. Students can find this difficult to come to

terms with. Turing proved that writing a program to determine whether any

program/data combination does or doesn’t halt is an impossible task. The

argument goes like this:

1. Imagine that we can write such a program, call it HaltChecker. If we give it

ANY program (P), and the data that P is to be tested with (D), it ALWAYS returns

True or False (True if program P does halt when run with data D, False when

program P doesn’t halt when run with data D). This can be represented as the

graph shown on the right. Notice that HaltChecker ALWAYS returns a value, i.e.,

it NEVER gets stuck in a cycle.

2. Now we write another program, let’s call it HaltCheckerPlus, containing the

HaltChecker program as a subroutine, and using it in a sneaky way:

HaltCheckerPlus doesn’t halt if HaltChecker says the program it’s testing does

halt, and it halts if HaltChecker says the program it’s testing doesn’t halt. Again

see the graph on the right to visualise this.

3. Finally, let’s ask ourselves what happens if we run HaltCheckerPlus, with

HaltCheckerPlus as the program it’s testing and as the data?

Answer: if HaltCheckerPlus would halt, HaltCheckerPlus doesn’t halt, and if

HaltCheckerPlus wouldn’t halt, HaltCheckerPlus does halt!

4. We clearly have a paradox, yet each step of our argument is logical. The only

thing that’s wrong is our first assumption: that we could write such a HaltChecker

program in the first place. This is known as a proof by reductio ad absurdum.

The proof as outlined not only proves that we can’t write a HaltChecker program

that works for EVERY program, but it also shows that there are programs (well,

at least one) we can define but that we cannot write. The Halting Problem is a

difficult idea to grasp but by showing the programs as graphs helps students to

visualise the proof, whilst also drawing links between topics. John Stout

HaltChecker

HaltCheckerPlus

Aaron Sloman encourages teachers to get involved in

resurrecting the teaching of AI in schools. Inspired by

Turing's ideas on morphogenesis, he argues for

extending the idea to a concept of meta-morphogenesis.

DR SEUSS, POETRY AND PROOF: DR SEUSS, POETRY AND PROOF: DR SEUSS, POETRY AND PROOF: DR SEUSS, POETRY AND PROOF:
SCOOPING THE LOOP SNOOPERSCOOPING THE LOOP SNOOPERSCOOPING THE LOOP SNOOPERSCOOPING THE LOOP SNOOPER
If you, or your students are still struggling to

comprehend the undecideability of the

Halting Problem, try this wonderful proof

written in the style of ‘Dr Seuss’ by

Geoffrey K Pullum of Edinburgh University.

No general procedure for bug checks succeeds.
Now, I won’t just assert that, I’ll show where it leads:
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

For imagine we have a procedure called P
that for specified input permits you to see
whether specified source code, with all of its faults,
defines a routine that eventually halts.

You feed in your program, with suitable data,
and P gets to work, and a little while later
(in finite compute time) correctly infers
whether infinite looping behaviour occurs.

If there will be no looping, then P prints out ‘Good.’
That means work on this input will halt, as it should.
But if it detects an unstoppable loop,
then P reports ‘Bad!’ --- which means you’re in the soup.

Well, the truth is that P cannot possibly be,
because if you wrote it and gave it to me,
I could use it to set up a logical bind
that would shatter your reason and scramble your mind.

Here’s the trick that I’ll use -- and it’s simple to do.
I’ll define a procedure, which I will call Q,
that will use P’s predictions of halting success
to stir up a terrible logical mess.

For a specified program, say A, one supplies,
the first step of this program called Q I devise
is to find out from P what’s the right thing to say
of the looping behaviour of A run on A.

If P’s answer is ‘Bad!’, Q will suddenly stop.
But otherwise, Q will go back to the top,
and start off again, looping endlessly back,
till the universe dies and turns frozen and black.

And this program called Q wouldn’t stay on the shelf;
I would ask it to forecast its run on itself.
When it reads its own source code, just what will it do?
What’s the looping behaviour of Q run on Q?

If P warns of infinite loops, Q will quit;
yet P is supposed to speak truly of it!
And if Q’s going to quit, then P should say ‘Good.’
Which makes Q start to loop! (P denied that it would.)

No matter how P might perform, Q will scoop it:
Q uses P’s output to make P look stupid.
Whatever P says, it cannot predict Q:
P is right when it’s wrong, and is false when it’s true!

I’ve created a paradox, neat as can be ---
and simply by using your putative P.
When you posited P you stepped into a snare;
Your assumption has led you right into my lair.

So where can this argument possibly go?
I don’t have to tell you; I’m sure you must know.
A reductio: There cannot possibly be
a procedure that acts like the mythical P.

You can never find general mechanical means
for predicting the acts of computing machines;
it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

Some young learners decide not to take courses in programming

because they feel other scientific subjects have more academic value.

One way of countering this is to emphasise the deep scientific content

in the science of computation. As an alternative, which may be of

interest to a different group of learners, a subgroup of members of CAS

has begun to explore ways of introducing AI programming as a way of

doing science, e.g. modelling human reasoning, learning, planning, or

use of language, by using languages specially designed to support

such experiments in "thinky" programming. Many AI researchers are

primarily interested in AI as the science of intelligent systems.

One of Alan Turing's highly influential papers, The Chemical Basis Of

Morphogenesis, put forward conjectures about how interactions among

molecules in a developing plant or animal could eventually give rise to

large scale patterns, such as spots on a leopard, or the spiral patterns

of fir cones. We can extend this idea. In many animals, not only new

physical structure, but also new information processing capabilities

emerge during development, including perception, motor control, use of

language, abilities to reason and plan and social competences.

Moreover the learning competences also change: what can be leant by

human infants, 5, 10, 15 year olds and so on changes dramatically.

We can express this by saying that in addition to morphogenesis of

information processing capabilities there is also morphogenesis of

morphogenesis (learning new ways to learn, for example). We can

label this "meta-morphogenesis" (MM). In addition, what different

species can learn, and what they can learn to learn, changes across

evolutionary time scales, another example of meta-morphogenesis

(actually meta-meta-morphogenesis - MMM). As far as I know, there

has been very little explicit study of how to model varieties of MM,

although some beginnings are to be found in AI research on learning

and evolutionary computation. This appears to be a large new field for

expansion of the science of computation. In future we may have to

learn to build useful systems that undergo meta-morphogenesis partly

under the influence of the environment in which they are applied.

Perhaps we should start educating young learners to think about this.

The AI group are collecting examples and links on this topic. Further

links in the supplement. Aaron Sloman

THE TEACHING OF ARTIFICIAL THE TEACHING OF ARTIFICIAL THE TEACHING OF ARTIFICIAL THE TEACHING OF ARTIFICIAL

INTELLIGENCE INTELLIGENCE INTELLIGENCE INTELLIGENCE AS SCIENCEAS SCIENCEAS SCIENCEAS SCIENCE

Aaron Sloman has produced a podcast introducing rule-based

programs based on an AI language, showing some of the power

of pattern-matching for structure-manipulation — crucial for

systems that think, see, learn, solve problems, make plans,

communicate, etc. The video includes interactions with a running

program whose capabilities are extended during use, as it

acquires more information from a human. The program can be run

remotely via a virtual machine provided by Lee Gillam. To run the

code (and other tools) locally on a Linux system contact Aaron.

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

WHEN SIZE DOES MATTEWHEN SIZE DOES MATTEWHEN SIZE DOES MATTEWHEN SIZE DOES MATTER (PART TWO): GETTING TOR (PART TWO): GETTING TOR (PART TWO): GETTING TOR (PART TWO): GETTING TO
GRIPS WITH THE NOTION OF GRIPS WITH THE NOTION OF GRIPS WITH THE NOTION OF GRIPS WITH THE NOTION OF ALGORITHMIC COMPLEXITYALGORITHMIC COMPLEXITYALGORITHMIC COMPLEXITYALGORITHMIC COMPLEXITY
The AQA Computing specification for A2 requires candidates to have some appreciation of the

complexity of a problem defined as the growth rate of the algorithm which solves the problem, i.e.

its big O complexity. Following on from the article in the last issue, Chair of Examiners, Kevin

Bond suggests some practical ways to explain O(Log2n) complexity to your classes.

You don’t need a computer to

demonstrate log2 n complexity.

Consider a low voltage light at the

bottom of a garden. The cabling is in

the ground. The light isn't getting

current, even though the power supply

in the shed is fine. The fault must be

located without digging up too much

of the garden. How? A technique

called the split-half method can

quickly locate the fault. A hole (and

test) is made halfway between the

shed and the light. If there is current

between the shed and the hole, the

break must be between the hole and

the light. Applying the technique

again, you make a second test, half-

way between the hole and the light

and so on. In this way the number of

holes is minimized and so also the

time taken.

This can be simulated in the

classroom. Two batons slotted

together on wooden dowels cover a

length of bare copper wire strapped to

the lower baton with masking tape

and several elastic bands. The copper

wire is cut and separated slightly as

shown in the diagram so that the

small gap is invisible through the

holes in the top baton. Nine holes are

spaced evenly with the two end holes

approximately 64 cm apart (at 0, 8,

16, 24, 32, 40, 48, 56 and 64cm). A

simpler version can be constructed

with just one baton. A strip of masking

tape with holes made at fixed intervals

covers the length of copper wire.

Sections of the wire are tested as

shown – the full length, then one half

then one quarter and so on. Any

circuit continuity tester can be used. If

you borrow a multi-meter from the

science department ensure it can

measure resistance (unit Ω).

Let's say that the break is between

8cm and 16cm. With the probes of the

current break detector in holes 0cm

and 64cm the instrument should

indicate a high resistance to current

flow (indicating a break). Now move

the 64cm probe to the 32cm hole. The

meter should still indicate a high

resistance to current flow. Next place

the probes in 0cm and 16cm where a

high reading should once again be

obtained. Finally, test the last section

0cm and 8cm. This time the reading

should be low, indicating an unbroken

circuit between 0 and 8cm. Although

there are 8 sections in total, the split-

half technique has reduced the

number of tests (needed to locate the

break) to 3. The same answer would

be obtained if the break was in any of

the other sections, e.g. 16 - 32. Try

this for yourself. Pick a section at

random for the break and count the

number of tests required.

How many tests would

be needed to find a

break between 0 and

4cm, with the wire split

into 16 sections? The

answer is 4 because

sections will need to be

tested 0-32, 0-16, 0-8

and finally 0-4.

Five tests would need to

be performed to find a

single break among 32 sections and

six tests for 64 sections. The number

of tests increases by one when the

number of sections is doubled. This is

shown in the table above. The number

of tests is the same as the exponent

when the number of sections is

expressed as a power of 2, e.g. 16

expressed as a power of 2 is 24. The

exponent in this example is 4. In

conclusion:

No of Tests = Log2 No of Sections

Therefore, the growth rate of number

of tests for this technique is O(log2 n)

where n is the number of sections.

This is shown in the line graph below

where the number of tests grows by

one each time the number of sections

is doubled. An explanation of the

maths behind this can be found in the

supplement.

Number of

Sections

Number of

Sections2

Number of

Tests

128 27 7

64 26 6

32 25 5

16 24 4

8 23 3

4 22 2

2 21 1

No of Sections

0

2

4

8

16

32

64

128

256

1 2 3 4 5 6 7 8 9

No of Tests

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

SUSSEX HUB EXPLORES APPSUSSEX HUB EXPLORES APPSUSSEX HUB EXPLORES APPSUSSEX HUB EXPLORES APP
DEVELOPMENT WITH DEVELOPMENT WITH DEVELOPMENT WITH DEVELOPMENT WITH YOUSRYOUSRYOUSRYOUSRCCCC

IBM PARTNERS WITH VITAL IBM PARTNERS WITH VITAL IBM PARTNERS WITH VITAL IBM PARTNERS WITH VITAL
TO PROVIDE TO PROVIDE TO PROVIDE TO PROVIDE IT INSIGHTSIT INSIGHTSIT INSIGHTSIT INSIGHTS
IBM's Smarter Planet initiative identifies

the need for a smarter use of today's

technology. Through the use of RFID tags

and sensors, data can be harvested and

manipulated to provide the necessary

output to allow us to make smarter

decisions which will have a positive effect

both in terms of profitability and

environmentally. IBM's Colleen Haffey

(Software IT Architect, IBM), Sophie

Bialaszewski (Community Programmes,

IBM) and Sue Nieland (Course Developer

Vital Specialist, E-Skills) facilitated an

initial teachers’ workshop at Park House

School & Sports College, Newbury.

Presentations from Tony Horrocks

(Smarter Planet), Alan Flack (Wimbledon

technologies) and Chris Bray (Careers in

IT) provided fantastic contexts for teaching

students about smart systems design and

development including the use of

augmented technology, identifying usability

of digital natives and ensuring that

systems are instrumented, interconnected

and intelligent. Following the pilots a series

of further workshops have been provided

at different venues. Lesson resources

have been produced to help enrich

computing at KS3. The series of

connected lessons aim to get them to think

differently about systems design and

development. They take students through

the process of identifying problems they

experience inside and outside of school,

identifying new technologies, designing

apps for intelligent use and presenting

their solutions. Download details are in the

web supplement. Pete Marshman

At the Autumn meeting of Sussex CAS, Paul Clarke from

Previca introduced an online development environment

he first developed in order to enable his daughter to

explore and write code.

 YOUSRC (pronounced "You source") uses a very simple programming

language called ELC (named after the young YOUSRC coder Emma

Louise Clarke) that takes its roots from many of the common

programming languages around. Because of this it is a very good

starting point. A language from which people can move on to more and

more complex and powerful environments. It is simple and the

students can control their own learning and go at their own pace. By

having an Android player they are able to go home and play their apps

on their Android phones....no Blackberry or Apple as of yet.

 We have used it in our Year 8 classes and it has been a great

success. Even though we didn't manage to get anything completed for

the competition there is always next year! Paul is always available for

any request, even silly ones. It is a great way to the get the students using

code and the whole development cycle. Following YouSrc we moved

on to Alice and student understanding has increased dramatically in

comparison to the groups that hadn't done YouSrc before. They are

different but it opens up access to many students who believe that they

“can't do computers”. Thanks Paul. Genevieve Smith-Nunes

CAS hubs continue to grow, as teachers appreciate informal

opportunities, like the Sussex meet above. Six new hubs held

their first meetings during November and December 2011: South

Coast (Poole), Three Counties (Malvern), West Yorkshire (Leeds),

NE Scotland (Elgin), West Midlands (Birmingham) and Hampshire

(Alresford). Other CAS teacher hubs that met last half term were

Surrey, Norfolk, Bristol, Thames Valley and Bucks. They are

proving an invaluable source of support. There are still some

areas not represented though. Please get in touch with me (see

supplement for details) if you teach/live in the following areas and

would like our help in setting up a hub: Cumbria, Northumberland,

Shropshire, Staffordshire, Lincolnshire, East Yorkshire, South

Yorks/Notts, Devon/Cornwall and Kent. Claire Davenport

GOOGLE CS4HS GOOGLE CS4HS GOOGLE CS4HS GOOGLE CS4HS GRANTS 2012GRANTS 2012GRANTS 2012GRANTS 2012
Google's grant program, Computer Science for

High Schools (CS4HS) provides funding to

universities who work with schools to engage

students in computer science. In 2011, three UK

universities were awarded funding. Queen Mary

University received continued support for their

CS4FN program, the University of Kent for

Greenfoot, and the University of Manchester for

the UK School Computer Animation

Competition. Applications for 2012 close mid

February. Further details in the supplement.

GETTING TO GRIPS GETTING TO GRIPS GETTING TO GRIPS GETTING TO GRIPS
WITH WITH WITH WITH GCSE COMPUTINGCSE COMPUTINGCSE COMPUTINGCSE COMPUTINGGGG
A course for ICT teachers wishing

to extend their skills to teach

GCSE Computing will be offered

at Anglia Ruskin University,

Chelmsford. The evening course

will run for 10 weeks, from

January 17 to March 27. The

theory to be covered will include:

• binary and hexadecimal

numbers

• computer architecture

• representing sound and

graphics

• networking

• structure of the internet

• algorithms and problem-solving

The programming language used

will be Python, using resources

already developed at last year’s

summer school, as reported in the

last issue. It will cover:

• variables and assignment

• selection and iteration

• arrays and other data structures

• file-handling

• working with an SQLite database

The course has been offered in

response to the requests from ICT

teachers to become familiar with

the background required to deliver

the new OCR GCSE Computing,

which is proving very popular. Like

the Python Summer School, it is

hoped to make the resources

available online for teachers in

other areas to access.

 Sue Sentance

WOMEN IN COMPUTING: SCHOOL WOMEN IN COMPUTING: SCHOOL WOMEN IN COMPUTING: SCHOOL WOMEN IN COMPUTING: SCHOOL

PUPILS ENJOY PUPILS ENJOY PUPILS ENJOY PUPILS ENJOY INSPIRATIONAL DAINSPIRATIONAL DAINSPIRATIONAL DAINSPIRATIONAL DAYYYY

None of us knew what to expect from

the day, but we were excited about

the experience. The first activity was a

lecture about what computer science

is. We were given an insight into how

a computer multiplies numbers, which

was really interesting because what

seemed like a simple process to us

was actually quite complicated for the

computer. Computers don’t have the

same type of thought process that we

have, so they have to be told every

individual thing to do which makes

doing the simplest of tasks complex.

We also watched a presentation on

‘Flying Helicopters – Research into

Unmanned Aerial Vehicles (UAVs)’.

Computer science doesn’t always

mean sitting in an office - it can save

lives too. The helicopters were

programmed to find people after

natural disasters.

We heard about a new course in

Computer Science and Philosophy. I

had never thought about these two

together, but as the professor

explained, it made more sense in my

head. Philosophers answer questions

about how we think and computer

scientists are trying to replicate the

way we think in machines. Trying to

understand why we think the way we

do could help us replicate thought

processes and teach computers how

to think. This is just one example of

how the two subjects cross over.

After lunch we discovered more links with

other subjects. For example a woman

talked to us about how computer

science and biology is used to make

models of the human body and how

these models are being used to test

medicines without harming people.

In the computer lab we used a

program called GeomLab, which

allowed us to create pictures on the

screen. The configuration of the

pictures allowed us to resize and

rotate the images. We were taught

how to assign functions which showed

us how simple and fun programming

can be and it inspired us to download

the program later to experiment more.

Finally we were taken around St John ’s

College. We saw students studying in

groups and got an insight into the

work ethic, the friends, and fun that

come with studying at university. We

all learned a lot. It inspired us to look

more into computer science and

consider it as one of our options for

later on in our lives. April Selby

When a group of Year 10 students from Bay House School,

Alverstoke in Hampshire attended a ‘Women In Computing’

event at the University of Oxford, Computer Science

Department they had no idea what to expect.

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

GOOGLE TRAILBLAZER PRIZES AT GOOGLE TRAILBLAZER PRIZES AT GOOGLE TRAILBLAZER PRIZES AT GOOGLE TRAILBLAZER PRIZES AT BIG BANG FAIR 2012BIG BANG FAIR 2012BIG BANG FAIR 2012BIG BANG FAIR 2012
As part of Google's ongoing initiatives to promote and encourage the

study of computer science, we will be attending the Big Bang Fair in

Birmingham in March 2012. We hope to excite students with some hands

on experience and engage them through challenging analytical problems.

Google will also award two prizes for the best computer science projects

of 2012. As well as receiving £500 and a certificate, each of the two

computing trailblazers (plus a guardian if necessary) will have the

opportunity to spend two days at one of the Google research sites in

Europe where they will be able to take part in tours, mentoring from

Google Engineers, workshops and get involved in some hands-on work!

Further links to Trailblazer details in the supplement. Niall Byrne

THINK THINK THINK THINK COMPUTER SCIENCECOMPUTER SCIENCECOMPUTER SCIENCECOMPUTER SCIENCE
Think Computer Science is an

annual event Microsoft Research

hold to showcase the work of

computer science researchers

and to enthuse Year 8/9 students

about the field of computer

science. The 8th annual event

was held at the Imperial War

Museum, Duxford on December

7th just as this issue was finalised.

More details in the next issue.

First through the door were pupils from

Morriston and Cefn Hengoed Schools.

The interactive Workshops, delivered on campus at Swansea University,

helped the pupils get to grips with computer programming in a practical

and creative way. The pupils were from different year groups but

enjoyed the same experience. Each Workshop began with hands-on

activities that encourage the pupils to think about the importance of

clear, precise instructions, which is fundamental to programming. The

first activity involves the participants dividing their tables into two teams

and secretly designing a mascot; they then have to give the opposite

team instructions on how to recreate it without showing them the initial

design. The second activity involves one pupil coming to the front of the

room and secretly drawing a picture; a second pupil looks at the image

and gives instructions to the rest of the class on how to reproduce it.

The pupils were then introduced to programming: Scratch for the 11- to

13-year-olds and Alice for the 13- to 16-year-olds. Each pupil has

access to a MacBook Pro with which they are guided to create their own

individual animations and games. The Technocamps experience doesn't

stop there; follow-on material is provided on a weekly basis for use in the

fun and stimulating atmosphere of an extracurricular Technoclub to

continue the pupils' development. Each group that attends a Workshop

will return some months later for a further day with an emphasis on

exploring the activities carried out in their Technoclubs.

We are currently developing further Workshops on diverse topics such

as cryptography, robotics, computer forensics, algorithmics, and general

problem solving through computational thinking. Topics are typically

motivated by the research expertise at the partner Institutions

(Aberystwyth, Bangor, Glamorgan and Swansea Universities).

Furthermore, each Workshop includes an inspirational talk. In October

these were given by Dr Philip Legg of Swansea University's Sports

Science Department who discussed app development and marketing,

and demonstrated his MatchPad App which was at that time being used

by the Welsh Rugby team at the World Cup. Through these inspirational

talks, pupils are given an insight into exciting projects taking place within

universities and industry across Wales, and are hopefully motivated to

consider career opportunities in computing. Faron Moller

A YEAR OF RAPID PROGA YEAR OF RAPID PROGA YEAR OF RAPID PROGA YEAR OF RAPID PROGRESS RESS RESS RESS
FOR CAS MEMBERS FOR CAS MEMBERS FOR CAS MEMBERS FOR CAS MEMBERS IN WALESIN WALESIN WALESIN WALES
CAS has made significant inroads in

raising the profile of Computing in Wales

since the inception of the first CAS Hub in

September 2010. We have focused on

widening and developing our network of

Computing/ICT teachers, and have been

active at national policy level by working

with the Welsh Government and different

examination boards.

Computing is certainly on the Welsh

Government's radar from both education

and economic renewal perspectives. It

also underpins their wider "Delivering a

Digital Wales" framework. Alongside the

CAS contribution to national-level policy

consultations, we have been working hard

to raise the perception of Computing as an

academic discipline distinct from digital

literacy. We have also focused on

Computing as a core STEM subject, as

well as how it underpins science and

research strategy. We have met with a

number of Welsh MPs and AMs, as well as

policy advisors within the Department for

Education and Skills, and will continue to

spread the message! We have also had

good coverage from BBC Wales.

Part of this success is down to CAS Wales'

strategic collaboration with Technocamps,

a £6 million project led by Swansea

University that aims to inspire young

people aged 11-19 through a range of

exciting computing-based workshops on

topics such as robotics, game

development, animation and digital

forensics. Funded by the European Social

Fund through the Welsh Government, it

has the long term goal of encouraging

young people to pursue careers in

Computing and related STEM areas that

will drive economic growth in Wales.

Together with Technocamps, we jointly

hosted the successful inaugural CAS

Wales Conference at Swansea University

in July 2011.

There is much to be done; but by working

closely with Technocamps we feel we can

advance the Computing agenda in Wales,

and be able to report on exciting

developments in these pages on a regular

basis. Tom Crick

In mid October, 120 students from Swansea became the

first pupils to experience a Technocamps Workshop. By the

start of 2012, a thousand more school children will have

attended Technocamps Workshops throughout Wales.

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

KIDS’ COMPUTER KIDS’ COMPUTER KIDS’ COMPUTER KIDS’ COMPUTER WORKSHOPS WORKSHOPS WORKSHOPS WORKSHOPS
A HIT WITH A HIT WITH A HIT WITH A HIT WITH TECHNOCAMPTECHNOCAMPTECHNOCAMPTECHNOCAMPSSSS

SEVERAL ORGANISATIONS JOIN SEVERAL ORGANISATIONS JOIN SEVERAL ORGANISATIONS JOIN SEVERAL ORGANISATIONS JOIN
FORCES AS FORCES AS FORCES AS FORCES AS CAS SCOTLAND IS BORNCAS SCOTLAND IS BORNCAS SCOTLAND IS BORNCAS SCOTLAND IS BORN
The Scottish Institute of Computing Educationalists (SIoCE) has

joined forces with other bodies to form CAS Scotland. Kate

Farrell, chair of the new organisation, reports on the progress

made during a very busy first term.

EXCITING YEAR AHEAD EXCITING YEAR AHEAD EXCITING YEAR AHEAD EXCITING YEAR AHEAD
AS AS AS AS CAS GROUP GROWS CAS GROUP GROWS CAS GROUP GROWS CAS GROUP GROWS
The numbers of people signing up

for CAS grows weekly (see chart

below). Around 70% of the

members are active school

teachers; but there is a solid core of

IT professionals, software

developers, parents, governors and

university academics. There is

significant interest in encouraging

computing, as a subject, in our

schools. The CAS message is

getting heard! CAS is a grassroots

organisation - it is you, the teachers,

who will make the difference.

This year will see significant

changes to the school curriculum.

The outcome of the National

Curriculum Review is not yet known

but there are some indications.

There are likely to be changes to

the accreditation of vocational

courses and their contribution to

league table indicators. ICT, the

subject largely responsible for the

huge uptake in vocational

qualifications has been criticised in

many quarters. The indication is that

the government will favour a

slimmed down curriculum, with

flexibility for schools to decide what

else to teach beyond.

There is a growing awareness that

Computing has been neglected in

many schools (see the

recommendations of the Livingstone

Hope Report and the government's

response). ICT teachers could feel

threatened by impending changes

but an increasing number are

recognising the opportunities

available to develop computing.

These exciting opportunities

increase the intellectual standing of

the department, inspire children and

lay the foundation for future

progression into KS4 computing

courses. CAS is planning ways to

support such teachers through the

development of the on-line

community, resource repository and

training courses. Exciting times lie

ahead! Simon Humphreys

SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON web supplement: www.computingatschool.org.uk

CAS Scotland has have been working

with and talking to the Royal Society

of Edinburgh, BCS, The Chartered

Institute for IT, Computing at School,

Scottish Informatics and Computer

Science Alliance (Scottish Universities)

and various industry partners, as well

as participating in debates on the

future of Glow and ICT in Scottish

Education. Oh, and doing some

teaching when we have a chance!

The Royal Society of Edinburgh &

BCS, The Chartered Institute for IT

have seconded Jeremy Scott

(Principal Teacher of Computing at

George Heriot’s School in Edinburgh)

to exemplify some of the Computing

and Information Science technologies

outcomes in Curriculum for

Excellence. The focus for the project

will be mainly Level 3 and Level 4

experiences and outcomes. As part of

this work there is a new group on

CompEdNet to gather the opinions

and suggestions of members for the

project. Links to register can be found

in the supplement. This project will

generate a range of materials and

resources for CfE Computing courses

appropriate for 1st to 3rd year pupils.

There will be three packs developed

and released in 2012.

The Scottish Qualifications Authority is

currently developing new

qualifications to replace current ones

at all levels as part of Curriculum for

Excellence. The SQA are publishing

draft documentation as it becomes

available and have just finished

consulting on the unit specifications

for the new National 4 and 5

qualifications. These will be in our

schools in 2013.

As part of the Turing Centenary the

Royal Society and University of

Edinburgh are running the T100

TwitTest Schools Project. Pupils have

to decide which tweets are real and

which have been created by an AI

software bot. This Turing Test for the

next generation will allow pupils,

parents and teachers to explore just

what intelligence is and how we really

know if someone, or something, is

intelligent. Again, links can be found in

the supplement.

Finally, a brief mention of the first CAS

Scotland hub meeting, hosted by

Claire Griffiths, on 15 Nov Moray, NE

Scotland. Eleven people attended to

hear guest speaker and local website

designer Sam Hampton-Smith - the

first of many, we hope. Kate Farrell

CAS MEMBERSHIP 2008 CAS MEMBERSHIP 2008 CAS MEMBERSHIP 2008 CAS MEMBERSHIP 2008 ---- 2011 2011 2011 2011
WHEN DID YOU JOIN?WHEN DID YOU JOIN?WHEN DID YOU JOIN?WHEN DID YOU JOIN?

FREE MAGAZINES FOR FREE MAGAZINES FOR FREE MAGAZINES FOR FREE MAGAZINES FOR
PUPILS FROM PUPILS FROM PUPILS FROM PUPILS FROM CS4FNCS4FNCS4FNCS4FN

A PAUSE FOR A PAUSE FOR A PAUSE FOR A PAUSE FOR THOUGHTTHOUGHTTHOUGHTTHOUGHT
CAPTCHA - Completely Automated

PublicTuring test to tell Computers

and Humans Apart - is a challenge-

response test. They are used to

prevent automated software from

posting to blogs, forums and wikis.

Computers are presumed unable to

solve CAPTCHAs so users entering

a correct answer are presumed

human. It’s known as a reverse

Turing test, since a Turing test is

administered by a human targeting

a machine while CAPTCHA is

administered by a machine

targeting a human.

A CAPTCHA may ask users to

identify a distorted image. Some

make them more accessible using

obvious questions ("The 2nd letter

in "frogs" is?"). Image recognition

CAPTCHAs use algorithms

involving extraction of colour or

other special point features, which

cannot be correctly extracted after

distortion, whilst still recognizable to

humans. Imagination CAPTCHAs

create images by applying a

sequence of randomized distortions

on the original images.

Approaches available for cracking

CAPTCHAs include exploiting bugs

in the implementation, improving

character recognition software, or

using humans to process tests.

Spammers pay up to $1.20 per

1,000 solved CAPTCHAs to

companies in some developing

nations. Others attempt to beat

visual CAPTCHAs by creating

programs that can do Pre-

processing - to remove background

noise, Segmentation - to split the

image into single character regions,

and Classification - identifying

characters in regions. Computers

can relatively easily pre-process

and classify, however humans

remain better at segmentation. So,

if you want to devise a program to

beat CAPTCHAs, concentrate on

segmentation. Lyndsay Hope

Most readers will be aware of the excellent

free magazine for computing students but

CS4FN have also extended their output to

reach pupils drawn to computing through

other areas.

Computing At School
are supported and
endorsed by:

CAS...JOIN CAS...JOIN CAS...JOIN C
Computing at School was born out of our excitement with the discipline, combined with a serious
concern that students are being turned off computing by a combination of factors. Our goal is to put
the fun back into computing at school. Will you help us? Simply mail:

membership @ computingatschool.org.uk

Many thanks to the following for help with this issue of SWITCHEDONSWITCHEDONSWITCHEDONSWITCHEDON : Clive Beale,
Jonathan Black, Kevin Bond, Niall Byrne, Tom Crick, Claire Davenport, Roger Davies, Peter Donaldson,
Kate Farrell, Graham Hastings, Lyndsay Hope, Simon Humphreys, Peter Marshman, Faron Moller,
Simon Peyton-Jones, April Selby, Sue Sentance, Huma Shah, Aaron Sloman, Genevieve Smith-Nunes,
John Stout, Andrew Tringham, Liz Upton. Front page image © The Bletchley Park Trust

SEE THESEE THESEE THESEE THE SWITCHEDSWITCHEDSWITCHEDSWITCHEDONONONON WEB SUPPLEMENT FOR MWEB SUPPLEMENT FOR MWEB SUPPLEMENT FOR MWEB SUPPLEMENT FOR MORE LINKS ORE LINKS ORE LINKS ORE LINKS ANDANDANDAND EXTRA INFORMATION EXTRA INFORMATION EXTRA INFORMATION EXTRA INFORMATION

www.computingatschool.org.uk

The team behind CS4FN has just released a new free

magazine: Electronic Engineering For Fun. It casts their

eye for a story on electronics and physical computing.

The aim of the new magazine is to enthuse students

about electronic engineering with articles about real

leading-edge research on gadgets, networks, chip

design, robots, satellites and technology. Inside the first

issue students will find stories about creating their own

gadgets, Nikola Tesla, researchers making baby

robots, and computer chips embedded in tattoos.

Last term we also distributed Issue 3 of Audio. Audio

engineers want to create new sounds and even new

instruments to make them. They are responsible for writing

systems that, for example, allow out-of-tune pop prima

donnas to actually sound great. Now sound has gone

electronic it opens up new ways for creating all sorts of

things—not just music.

Many readers will receive SwitchedOn with their class

set of CS4FN—the original publication supported by a

wonderful website. If not, you can order single copies

or class sets of any of our magazines for your

students at no charge. For more information just visit

the CS4FN website. Jonathan Black.

